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Abstract
We present isotropic, elastic–plastic finite element calculations detailing the
pressure relationship between an inclusion and its surrounding matrix, subject
to an externally imposed hydrostatic strain. In general, the inclusion and the
matrix have different values of hydrostatic pressure, depending on their absolute
and relative values of Young’s modulus and Poisson’s ratio. A series of finite
element models was used to explore the parameter space of the elastic and
plastic properties of an inclusion within a matrix. In all cases where there is
insufficient relaxation of the nonhydrostatic stress, the material with the higher
bulk modulus will also have a higher pressure, regardless of the shear moduli.
The complete data set was subjected to a Pareto analysis to determine the main
and secondary effects which influence the final result, expressed as the ratio of
the pressure of the matrix to that of the inclusion. The four most important
factors which determine the pressure ratio of an inclusion and matrix are the
Young’s modulus of the matrix, the interaction of the Young’s modulus and the
yield strength of the matrix material, the Young’s modulus of the inclusion, and
the interaction of the Young’s modulus of the inclusion with the yield strength
of the matrix material. The yield strength of the inclusion has a statistically
insignificant effect on the results. This information provides guidelines for
designing the most effective combinations of unknowns and material standards
to minimize pressure errors in equation of state measurements.

1. Introduction

The development of synchrotron capabilities has accelerated the ability to perform in situ mea-
surements of the equation of state and phase stability of deep Earth minerals at the relevant pres-
sure and temperature conditions. Many of the measurements rely on the ability to measure x-ray
diffraction information from two materials together within a high pressure sample chamber—
an unknown material of interest, and a standard material with a well-characterized equation of
state to be used as a pressure calibrant. For example, a study by Irifune et al (1998) shows
that the ringwoodite/perovskite transformation in Mg2SiO4, long thought to be responsible for
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the 660 km discontinuity, actually transforms at a pressure of 21 GPa, 2 GPa lower than the
observed seismic boundary. However, in a series of alternate experiments performed in the
laser heated diamond cell (Hirose et al 2001a, 2001b, Shim et al 2001, Chudinovskikh and
Boehler 2004) the presence of the phase transformation at pressures corresponding to the seis-
mic discontinuity was confirmed. Since all of these experiments require samples which mix
calibrated standards with the material of interest, the cumulative experimental results suggest
inconsistencies in the calibrations of standard materials which act as in situ pressure markers.
These, and other similar results, have sparked a significant community-wide effort to examine
the high temperature, high pressure equation of state of standard materials including Au, MgO,
Pt Re, and others; see for example (Shim et al 2002, Fei et al 2004).

These studies have shown that errors in the high P, T equation of state can be responsible
for many of the pressure discrepancies in the literature. One potential cause of the errors
in the equation of state measurements has been identified as the presence of nonhydrostatic
stresses within the sample chamber. In the x-ray geometry that is normally used for lattice
strain measurements, from which equation of state information is derived, the presence of
even small amounts of nonhydrostatic stress can severely underestimate the volumetric lattice
strains, resulting in too high values of bulk modulus (e.g. Kavner et al 2000). Accurate
assessments of equations of state using this x-ray geometry require a fully hydrostatic sample
environment. Two methods have been used to maintain this condition: gas loading the sample
within a perfectly hydrostatic medium, and laser annealing. The goal of gas loading is to create
isolated grains fully surrounded by a liquid environment in the high pressure sample chamber,
and there has been a recent focus of effort on this. However, radial diffraction measurements
from argon, a commonly used pressure medium, have shown that this material can support
significant amounts of nonhydrostatic stress (Mao H K et al, personal communication). H and
He are significantly more difficult to load in the sample chamber without specialized equipment.
Laser heating is also used to ‘anneal’ the nonhydrostatic component of the stresses within the
sample. However, a study following the high P, T behaviour of two materials mixed together
in the diamond anvil cell shows that significant nonhydrostatic stress may be reintroduced into
the sample during the rapid thermal quench as the laser is shut off; and there may even be
differential stress present at high temperatures, especially in the presence of steep temperature
gradients (Kavner and Duffy 2001).

Further difficulties are introduced when two materials are mixed together within the high
pressure environment. The usual assumption made in this case is that the pressures of the two
phases are equal. However, this will only be the case if all of the elastic shear stresses are able to
relax on the timescale of the experiment. There have been some enquiries into the stress state in
a sample chamber where two materials are mixed together. Wang et al (1998) pointed out that
inclusions in a matrix may suffer from stress gradients near the interface, resulting in pressure
differences inferred from x-ray diffraction strain measurements. However, there has not yet
been a quantitative analysis of this effect, applied across a series of sample environments.

In this study, we used a finite element code to analyse the pressure relationships of an
inclusion within a matrix in the diamond cell sample chamber, and applied a Pareto analysis
to extract the most significant variables affecting the pressure relationship. The goal of these
calculations was to simulate an idealized condition where the externally applied stresses are
purely hydrostatic. The corresponding idealized diamond cell experiment would be a sample
consisting of oxide or silicate with pressure-marker inclusions, surrounded by a perfectly fluid
medium such as He. In most real situations, the stress state in the diamond cell sample chamber
likely deviates from hydrostaticity. Therefore, in addition to the idealized system, we analyse
analogous experimental systems from our own research and others, to generate a prediction of
potential pressure pitfalls in the diamond anvil cell.
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(a) (b)

Figure 1. Sample geometry for the two-dimensional cases of inclusion (B) embedded in a matrix
(A); (a) before compression (b) after hydrostatic displacement.

2. Method

We performed a series of finite element calculations on an inclusion within a matrix subject to
an externally applied hydrostatic stress using the commercially available finite element code,
Zebulon (Northwest Numerics). The geometry for all samples consists of a square solid S
constituted by two phases: the matrix, A, which surrounds one inclusion B (figure 1). The
starting linear size ratio of the inclusion to the matrix was 0.2. The study was performed in
two dimensions. For the purposes of this study, we use a time-independent, isotropic, linearly
elastic/perfectly plastic mechanical model for the behaviour of both matrix and inclusion. Each
phase is assumed to be continuous with homogeneous properties. Therefore, each material is
characterized by three independent parameters: two elastic moduli and a yield stress following
the von Mises yield criterion (yielding occurs when the differential stress exceeds the yield
stress). In the elastic domain we considered EA and EB, the Young’s modulus for the phase A
and the phase B, respectively, and νA and νB, the Poisson ratios. Elastic deformations occur
as long as stresses do not exceed the yield strength of the phase, σyA and σyB. Once the yield
strength thresholds are reached, they can deform plastically, or flow.

The procedure used in the finite element program is based on an incremental stress and
strain analysis. Below a shear modulus yield criterion, we increment the elastic strain, and
solve for stress using Hooke’s law for an isotropic solid:

ρ = Eεe (1)

where σ is the stress tensor, E is the Young’s modulus, and εe is the elastic portion of the
strain. For an isotropic solid, there are two independent elastic moduli, Young’s modulus, E ,
and Poisson’s ratio, ν. However, the yield criterion is based on a maximum shear modulus, G.
To calculate G, the relationship used is given by

G = E

2(1 + ν)
. (2)

Above the yield strength, the strain is no longer elastic, but is perfectly plastic (no increase
of stress with increasing strain). The total strain is the elastic portion plus the plastic portion,
written as

dε = dεe + dεp (3)

where dεe is the elastic strain increment, related to the stress increment by the classical Hooke’s
law in a isotropic case. dεp is the plastic strain increment. Our calculations are carried out with
the composite sample geometry outlined in figure 1. L is the length of the side of the square and
R the radius of the inclusion. A constant displacement boundary conditions was applied at the
inclusion/matrix boundary. To generate a hydrostatic loading we applied the same displacement
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on the edges of the sample U = U1 = U2. The output of the program was an evaluation of the
stress state within each element, which was then averaged separately in the inclusion and the
matrix, in terms of its hydrostatic and differential components. Most of the stress redistribution
occurred near the inclusion/matrix boundary.

2.1. Design and statistical analysis of experiments

A full table of variable response was run (table 1), perturbing each of the six experimental
variables (EA, EB, νA, νB, σyA, σyB) between low and high limits representing a wide range of
conceivable values (table 1). A total of 64 separate models were run. A Pareto analysis of the
variable response was performed using the commercial software Minitab (www.minitab.com).
A Pareto analysis is a formal technique in statistical analysis which quantifies how variations
in each parameter influence the final outcome, when many variables are involved. The Pareto
analysis ranks the relative influence of each variable on the designated outcome variable, all
other things being equal (statistically). In this case, we choose the outcome variable to be
the pressure ratio between the sample and inclusion, PA/PB. An important assumption that
is made in this Pareto analysis is that the outcome (PA/PB) is a linear response of each input
variable, which allows the use of high and low limits of each variable. This assumption was
tested by several models which employed intermediate values, as a check that the outcome was
also proportionally intermediate.

3. Results and discussion

Table 1 shows the list of input parameters for each numerical model, and the resulting pressure
ratio between the matrix and inclusion is given in the last column. These results show that,
in general, the pressure of an inclusion and a matrix are not equal, even when the composite
material is subject to an externally imposed hydrostatic displacement.

The Pareto chart created by Minitab (figure 2) provides a graphic summary of the relative
importance in each of the variables in determining the final outcome of the data (PA/PB).
The Pareto analysis can also be employed to generate a list of interaction effects—how two
parameters combine to determine the outcome. The analysis performed here also included
two-way and three-way interactions among the individual parameters (figure 2).

The single most significant determinator of the pressure difference between the matrix
and the inclusion is the Young’s modulus of the matrix, EA (A in figure 2). This is the most
important single parameter in determining the relative pressure between the matrix and the
inclusion; and the two-way interaction of the Young’s modulus and the yield strength of the
matrix has an equivalent influence on the outcome of the models. The next two most important
effects encompass the Young’s modulus of the inclusion: that variable alone is the third most
important determinator of the pressure difference, and the interaction with the yield strength
of the matrix is the next most important. These four effects comprise the most important
relationships between composite sample properties and resulting pressure ratios.

The Poisson’s ratio of the inclusion shows up as the fifth-ranked important variable, and
as the sixth-ranked variable, in combination with the yield strength of the inclusion. The lack
of combined Poisson’s ratio/Young’s modulus (AC and BD) effects in the top ten attests to
the importance of a material’s Young’s modulus relative to either the bulk or shear modulus,
in determining its pressure response. Since bulk and shear moduli are linear combinations of
Young’s and Poisson’s values, these interaction effects would be more important if the bulk and
shear moduli controlled the sample behaviour. For example, even though the Young’s modulus
of the matrix is the single most important variable, the corresponding Poisson’s ratio does not
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Table 1. Full table of models—hydrostatic, inclusion case.

Run EA EB νA νB σyA σyB PA/PB KA KB

1 300 300 0.45 0.45 8 8 1 10 10
2 300 300 0.45 0.45 8 0.01 1.002 10 10
3 300 300 0.45 0.45 0.01 8 0.1 10 10
4 300 300 0.45 0.45 0.01 0.01 1 10 10
5 300 300 0.45 0.25 8 8 1.147 10 50
6 300 300 0.45 0.25 8 0.01 1.148 10 50
7 300 300 0.45 0.25 0.01 8 1.001 10 50
8 300 300 0.45 0.25 0.01 0.01 1.000 10 50
9 300 300 0.25 0.45 8 8 0.836 50 10

10 300 300 0.25 0.45 8 0.01 0.677 50 10
11 300 300 0.25 0.45 0.01 8 0.999 50 10
12 300 300 0.25 0.45 0.01 0.01 0.999 50 10
13 300 300 0.25 0.25 8 8 1 50 50
14 300 300 0.25 0.25 8 0.01 1.034 50 50
15 300 300 0.25 0.25 0.01 8 0.1 50 50
16 300 300 0.25 0.25 0.01 0.01 1 50 50
17 300 50 0.45 0.45 8 8 1.165 10 1.667
18 300 50 0.45 0.45 8 0.01 1.165 10 1.667
19 300 50 0.45 0.45 0.01 8 1.001 10 1.667
20 300 50 0.45 0.45 0.01 0.01 1.001 10 1.667
21 300 50 0.45 0.25 8 8 1.472 10 8.333
22 300 50 0.45 0.25 8 0.01 1.509 10 8.333
23 300 50 0.45 0.25 0.01 8 1.005 10 8.333
24 300 50 0.45 0.25 0.01 0.01 1.002 10 8.333
25 300 50 0.25 0.45 8 8 1.083 50 1.667
26 300 50 0.25 0.45 8 0.01 1.094 50 1.667
27 300 50 0.25 0.45 0.01 8 1.000 50 1.667
28 300 50 0.25 0.45 0.01 0.01 1.000 50 1.667
29 300 50 0.25 0.25 8 8 1.846 50 8.333
30 300 50 0.25 0.25 8 0.01 1.982 50 8.333
31 300 50 0.25 0.25 0.01 8 1.003 50 8.333
32 300 50 0.25 0.25 0.01 0.01 1.002 50 8.333
33 50 300 0.45 0.45 8 8 0.922 1.667 10
34 50 300 0.45 0.45 8 0.01 0.923 1.667 10
35 50 300 0.45 0.45 0.01 8 0.999 1.667 10
36 50 300 0.45 0.45 0.01 0.01 0.999 1.667 10
37 50 300 0.45 0.25 8 8 0.975 1.667 50
38 50 300 0.45 0.25 8 0.01 0.987 1.667 50
39 50 300 0.45 0.25 0.01 8 1 1.667 50
40 50 300 0.45 0.25 0.01 0.01 1 1.667 50
41 50 300 0.25 0.45 8 8 0.837 8.333 10
42 50 300 0.25 0.45 8 0.01 0.677 8.333 10
43 50 300 0.25 0.45 0.01 8 0.997 8.333 10
44 50 300 0.25 0.45 0.01 0.01 0.998 8.333 10
45 50 300 0.25 0.25 8 8 0.72 8.333 50
46 50 300 0.25 0.25 8 0.01 0.731 8.333 50
47 50 300 0.25 0.25 0.01 8 0.997 8.333 50
48 50 300 0.25 0.25 0.01 0.01 0.998 8.333 50
49 50 50 0.45 0.45 8 8 1 1.667 1.667
50 50 50 0.45 0.45 8 0.01 1.003 1.667 1.667
51 50 50 0.45 0.45 0.01 8 1 1.667 1.667
52 50 50 0.45 0.45 0.01 0.01 1 1.667 1.667
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Table 1. (Continued.)

Run EA EB νA νB σyA σyB PA/PB KA KB

53 50 50 0.45 0.25 8 8 1.309 1.667 8.333
54 50 50 0.45 0.25 8 0.01 1.388 1.667 8.333
55 50 50 0.45 0.25 0.01 8 1.002 1.667 8.333
56 50 50 0.45 0.25 0.01 0.01 1.001 1.667 8.333
57 50 50 0.25 0.45 8 8 0.742 8.333 1.667
58 50 50 0.25 0.45 8 0.01 0.744 8.333 1.667
59 50 50 0.25 0.45 0.01 8 0.997 8.333 1.667
60 50 50 0.25 0.45 0.01 0.01 0.998 8.333 1.667
61 50 50 0.25 0.25 8 8 1 8.333 8.333
62 50 50 0.25 0.25 8 0.01 1.067 8.333 8.333
63 50 50 0.25 0.25 0.01 8 0.999 8.333 8.333
64 50 50 0.25 0.25 0.01 0.01 1 8.333 8.333

Figure 2. A Pareto chart showing the relative influence of each variable (legend in the figure) on
the final outcome of the numerical models (PA/PB). One-way, two-way, and three-way variable
interactions are shown.

show up until the 12th most important influence, and then, only in a three-way combination
with the matrix Young’s modulus, and the yield strength of the inclusion.

By itself, the yield strength of either the matrix or the inclusion did not have a significant
effect on the pressure difference. The yield strength of the matrix was only important in its
interaction with the Young’s modulus of the matrix and, to a lesser extent, but still significant,
the inclusion. To our extreme surprise, the yield strength of the inclusion, σB (parameter F in
figure 2), had almost no effect on the pressure outcome. That by itself suggests that the high
strength of Pt relative to Au (Duffy et al 1999a, 1999b, Kavner and Duffy 2003) will not play
a significant role in generating a pressure variation in samples which use these materials as a
mixed-in pressure marker. However, this also means that the relatively low yield strength of
these calibrant materials cannot help to ensure a hydrostatic environment.
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Figure 3. A Pareto chart showing the important two-way interactions among the variables. The
interactions are between the variables in the rows (EA, EB, νB) and the columns (EB, νB, σy,A).
The final outcome of the numerical models (PA/PB) is shown on the right. The horizontal dotted
lines along each row designate the condition (PA/PB) = 1. The thin grey lines in the first row
represent a sample with a Young’s modulus of 280 GPa.

Laser heating has been suggested as a means to anneal pressure differences and
nonhydrostaticity in high pressure samples (Jackson et al 2004, Sinogeikin et al 2004a,
2004b). Heating can only relax the yield strength, and we found in these results that the
yield strength plays a secondary role in determining the pressure discontinuity between an
inclusion and its surrounding matrix. Heating samples, if done uniformly, does serve to relax
most deviatoric stress, due to the loss of strength of materials as the homologous temperature
(T/Tm) increases. Of course, the ability of heating to restore a hydrostatic environment depends
on the relationship of the temperature to the melting temperature (high Tm materials will require
larger temperatures to relax deviatoric stresses) and uniformity of temperatures. It is unclear
how large temperature gradients in the diamond cell combined with fast quench times affect
large-scale stress heterogeneity, especially in the case of inclusions.

4. Sample design for equation of state and phase stability measurements

The ultimate goal of experiments to determine the equation of state and/or phase stability
at high pressures is to ensure as hydrostatic an environment as possible. However, this is
not always possible, for several potential reasons. There are only a limited number of truly
hydrostatic media, and the desire to reproduce results under different loading conditions means
that a hydrostatic loading environment might not be available. Furthermore, hydrostaticity is
increasingly difficult to maintain under increasingly extreme conditions. At high pressures,
hydrostaticity may be lost due to large volume shrinkage of hydrostatic media with respect
to the (usually) less compressible sample; and at high temperatures, stress gradients may be
associated with temperature gradients. When hydrostaticity is not guaranteed, the next best
choice is to attempt to ensure that any pressure difference between the matrix and the inclusion
is minimized. The interaction Pareto chart (figure 3) can be used as a guide to formulating
experiments. The chart shows the most important two-way interactions among four variables:
EA, EB, νB and σy,A. Together, these variables account for 11 out of the top 12 influences on
pressure relationships between the sample and the inclusion.

For example, the dotted horizontal lines along each row in figure 3 show the elastic
property requirements for the pressure of the inclusion to be equal to that of the matrix. The
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first row of the plot in figure 3 shows how the Young’s modulus of the matrix combines
with the Young’s modulus of the inclusion (second column), Poisson’s ratio of the inclusion
(third column), and the yield strength of the matrix (fourth column) to influence the pressure
difference between the matrix and the inclusion (right-hand axis). In the first row, the two
plotted thick lines correspond to the two end members of EA, the Young’s modulus of the
matrix (50 and 300 GPa). For this example, we assume that the matrix has a Young’s modulus of
285 GPa and a Poisson’s ratio of 0.255. These are approximately the isotropic elastic constants
for the mineral ringwoodite, at ambient pressures and temperatures (Sinogeikin et al 2001).
First, a line corresponding to EA of our sample material is interpolated between the two end
members. This linear interpolation is shown as thin grey lines in the first row of figure 3.
The point on the X -axis where this interpolated line intersects the dotted line corresponding to
PA/PB = 1 describes the design criteria for the value shown in each column. For example,
in the second column, the interpolated line intersects PA/PB = 1 at an X -axis value that is
significantly lower than EB = 285—closer to EB = 250 GPa. Therefore, an inclusion with
a Young’s modulus about 12% smaller than the matrix will have the greatest effect in helping
to ensure uniform pressures. The third column shows how the interactions between the matrix
Young’s modulus and the inclusion poisson value influences pressure. In this case, an inclusion
with a high Poisson’s ratio—about 0.4—will help maintain pressure equality. Finally, the last
column shows simply the fundamental effect of sample strength. The pressure relationship is
always unity when the yield strength of the matrix approaches zero.

This analysis provides a first order accounting of the pressure differences for phase
transformations in ringwoodite using Au as a pressure marker (Irifune et al 1998) versus Pt
(Shim et al 2001). Both Au and Pt have similar values of the Poisson’s ratio—0.4—which is
the proper value to minimize their effects on pressure differences. However, Young’s modulus
of Pt, 179 GPa, is much larger than that for Au, 78.5 GPa. Therefore, it makes sense that the
large mismatch between the Young’s modulus of the ringwoodite sample and a gold inclusion
could cause a pressure mismatch within the high pressure sample chamber.

5. Conclusions

This model was designed to be a simple, straightforward approach to examining the most
important influences on pressure relationships in samples in a high pressure sample chamber.
In a future set of models, some of the next analyses to include will be: a more realistic strain-
hardening rheology of sample response, an examination of interactions between neighbouring
inclusions, examination of size effects of inclusions, and an extension of this analysis to include
polycrystalline samples. These can be modelled by approaching them as a composite of
randomly oriented materials with different elastic and plastic properties. This problem can
be approached using two basic stages of complexity. In a simple model, elastic and plastic
properties change with grain orientation for input polycrystalline material, but each grain has
constant properties. In a more complicated model, the elastic and plastic properties of each
individual grain change at each displacement step, and change with rotation of the grain within
the matrix (Korsunsky et al 2000).

Our goal was to determine the pressure and the elastic strain component of each phase, to
study the influence of both elastic parameters (Young’s modulus and Poisson’s ratio) and the
yield strength on the relative pressure of inclusion and matrix. Both the elastic and strength
properties of both the matrix and the inclusion help determine the relative pressure between the
two. The Pareto analysis quantifies the relative importance of each of these variables—acting
singly and in tandem—in determining the pressure difference. The most important outcome is
that the pressure difference between the matrix and the inclusion is to first order related to the
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Young’s modulus of the matrix, and a combination of Young’s modulus and yield strength of
the matrix. The Young’s modulus of the inclusion is the third most important variable, and its
combination with the matrix yield strength is the next most important. Taken together, these
results can point the ways towards intelligent design of composite samples to optimize equation
of state measurements in the diamond anvil cell and other high pressure sample environments.

Acknowledgment

This work was performed with help from NSF grant EAR 0440332.

References

Chudinovskikh L and Boehler R 2004 MgSiO3 phase boundaries measured in the laser-heated diamond cell Earth
Planet. Sci. Lett. 219 285–96

Duffy T S, Shen G Y, Heinz D L, Shu J F, Ma Y Z, Mao H K, Hemley R J and Singh A K 1999a Lattice strains in gold
and rhenium under nonhydrostatic compression to 37 GPa Phys. Rev. B 60 15063–73

Duffy T S, Shen G Y, Shu J F, Mao H K, Hemley R J and Singh A K 1999b Elasticity, shear strength, and equation of
state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa J. Appl. Phys.
86 6729–36

Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M and
Funakoshi K 2004 Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as
an internal pressure standard and its geophysical implications J. Geophys. Res.-Solid Earth 109 B02305

Hirose K, Fei Y W, Ono S, Yagi T and Funakoshi K 2001a In situ measurements of the phase transition boundary in
Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth’s mantle Earth Planet. Sci.
Lett. 184 567–73

Hirose K, Komabayashi T, Murakami M and Funakoshi K 2001b In situ measurements of the majorite–akimotoite–
perovskite phase transition boundaries in MgSiO3 Geophys. Res. Lett. 28 4351–4

Irifune T, Nishiyama N, Kuroda K, Inoue T, Isshiki M, Utsumi W, Funakoshi K, Urakawa S, Uchida T, Katsura T and
Ohtaka O 1998 The postspinel phase boundary in Mg2SiO4 determined by in situ x-ray diffraction Science
279 1698–700

Jackson J M, Zhang J and Bass J D 2004 Sound velocities and elasticity of aluminous MgSiO3 perovskite: implications
for aluminum heterogeneity in the Earth’s lower mantle Geophys. Res. Lett. 31 L10614

Kavner A and Duffy T S 2001 Pressure–volume–temperature paths in the laser-heated diamond anvil cell J. Appl. Phys.
89 1907–14

Kavner A and Duffy T S 2003 Elasticity and rheology of platinum under high pressure and nonhydrostatic stress Phys.
Rev. B 68

Kavner A, Sinogeikin S V, Jeanloz R and Bass J D 2000 Equation of state and strength of natural majorite J. Geophys.
Res.-Solid Earth 105 5963–71

Korsunsky A M, Daymond M R and Wells K E 2000 The development of strain anisotropy during plastic deformation
of an aluminium polycrystal Ecrs 5: Proc.5th European Conf. on Residual Stresses pp 492–7

Shim S H, Duffy T S and Kenichi T 2002 Equation of state of gold and its application to the phase boundaries near
660 km depth in Earth’s mantle Earth Planet. Sci. Lett. 203 729–39

Shim S H, Duffy T S and Shen G Y 2001 The post-spinel transformation in Mg2SiO4 and its relation to the 660-km
seismic discontinuity Nature 411 571–4

Sinogeikin S V, Bass J D and Katsura T 2001 Single-crystal elasticity of gamma-(Mg0.91Fe0.09)2SiO4 to high pressures
and to high temperatures Geophys. Res. Lett. 28 4335–8

Sinogeikin S V, Lakshtanov D L, Nicholas J D and Bass J D 2004a. Sound velocity measurements on laser-heated
MgO and Al2O3 Phys. Earth Planet. Inter. 143/144 575–86

Sinogeikin S V, Zhang J and Bass J D 2004b Elasticity of single crystal and polycrystalline MgSiO3 perovskite by
Brillouin spectroscopy Geophys. Res. Lett. 2004 L06620-1-5

Wang Y, Weidner D J and Meng Y 1998 Properties of Earth and Planetary Materials at High Pressure and
Temperature ed M Manghnani and T Yagi (Washington, DC: American Geophysical Union) pp 365–72

http://dx.doi.org/10.1016/S0012-821X(04)00005-6
http://dx.doi.org/10.1103/PhysRevB.60.15063
http://dx.doi.org/10.1063/1.371723
http://dx.doi.org/10.1029/2003JB002562
http://dx.doi.org/10.1016/S0012-821X(00)00354-X
http://dx.doi.org/10.1029/2001GL013549
http://dx.doi.org/10.1126/science.279.5357.1698
http://dx.doi.org/10.1029/2004GL019918
http://dx.doi.org/10.1063/1.1335827
http://dx.doi.org/10.1103/PhysRevB.68.144101
http://dx.doi.org/10.1029/1999JB900374
http://dx.doi.org/10.1016/S0012-821X(02)00917-2
http://dx.doi.org/10.1038/35079053
http://dx.doi.org/10.1029/2001GL013843
http://dx.doi.org/10.1016/j.pepi.2003.09.017

	1. Introduction
	2. Method
	2.1. Design and statistical analysis of experiments

	3. Results and discussion
	4. Sample design for equation of state and phase stability measurements
	5. Conclusions
	Acknowledgment
	References

